Avtor/Urednik     Svetina, Saša
Naslov     Theoretical bases for the role of red blood cell shape in the regulation of its volume
Tip     članek
Vol. in št.     , št. Vol. 11
Leto izdaje     2020
Obseg     str. 1-13
ISSN     1664-042X - Frontiers in physiology
Jezik     eng
Abstrakt     The red blood cell (RBC) membrane contains a mechanosensitive cation channel Piezo1 that is involved in RBC volume homeostasis. In a recent model of the mechanism of its action it was proposed that Piezo1 cation permeability responds to changes of the RBC shape. The aim here is to review in a descriptive manner different previous studies of RBC behavior that formed the basis for this proposal. These studies include the interpretation of RBC and vesicle shapes based on the minimization of membrane bending energy, the analyses of various consequences of compositional and structural features of RBC membrane, in particular of its membrane skeleton and its integral membrane proteins, and the modeling of the establishment of RBC volume. The proposed model of Piezo1 action is critically evaluated, and a perspective presented for solving some remaining experimental and theoretical problems. Part of the discussion is devoted to the usefulness of theoretical modeling in studies of the behavior of cell systems in general.
Proste vsebinske oznake     red blood cells
cell to cell variability
Gárdos channel
rdeče krvne celice
variabilnost med celicami
Gárdosov kanal