Author/Editor     Trošt, Maja
Title     Dystonia update
Type     članek
Source     Curr Opin Neurol
Vol. and No.     Letnik 16
Publication year     2003
Volume     str. 495-500
Language     eng
Abstract     Purpose of review Dystonia is a movement disorder with a complex and not fully understood pathophysiology. Its better understanding would enable more focused treatment for the disorder. In this review, we provide an overview of recent studies of the pathophysiology of primary and secondary dystonia, with an emphasis on functional brain imaging. Potential mechanisms underlying the beneficial effects of deep brain stimulation for dystonia are also summarized. Recent findings The recognition of dysfunction at different levels of the nervous system has extended the classical notions of localized striatal abnormalities in primary dystonia. Recent biochemical studies have revealed evidence of abnormal torsion activity in DYT1 dystonia. Abnormal patterns of brain metabolism have also been identified using functional brain imaging in different dystonia genotypes. These findings, in conjunction with new electrophysiological techniques, can be utilized to help define a common mechanism for the neural dysfunction in dystonia. Summary New insights into the pathophysiology of dystonia have been provided by recent studies using electrophysiology, biochemistry and human genetics, as well as functional brain imaging studies. These advances together may create the basis for new therapies for this disorder.
Descriptors     DYSTONIA
ELECTRIC STIMULATION THERAPY
MOLECULAR CHAPERONES
MOTOR CORTEX
POINT MUTATION
BASAL GANGLIA
CARRIER PROTEINS
CHROMOSOMES, HUMAN, PAIR 9
NEURAL INHIBITION
RECEPTORS, PRESYNAPTIC
SOMATOSENSORY CORTEX
SPINAL CORD
THALAMUS