Author/Editor     Čebašek, Vita; Ribarič, Samo
Title     Changes in the capillarity of the rat extensor digitorum longus muscle 4 weeks after nerve injury studied by 2D measurement methods
Type     članek
Vol. and No.     Letnik 201, št. 3
Publication year     2016
Volume     str. 211-219
ISSN     1422-6405 - Cells, tissues, organs
Language     eng
Abstract     We have previously shown by 3D study that 2 weeks after nerve injury there was no change in the length of capillaries per muscle fibre length in rat extensor digitorum longus muscle (EDL). The primary goal of the present 2D study was to determine the capillarity of rat EDL 4 weeks after various modes of nerve injury. Additionally, we wished to calculate the same capillary/fibre parameters that were used in our 3D stereological study. EDL muscles derived from denervated (4 weeks after nerve injury), re-innervated (4 weeks after two successive nerve crushes) and age-matched controls from the beginning (CON-1) and the end (CON-2) of the experiment were analysed in two ways. Global indices of capillarity, such as capillary density (CD) and capillary/fibre (C/F) ratio, were determined by automatic analysis, local indices as the number (CAF) and the length of capillaries around individual muscle fibres (Lcap) in relation to muscle fibre size were estimated manually by tracing the muscle fibre outlines and the transversally and longitudinally cut segments of capillaries seen in 5-%m-thin muscle cross sections. Four weeks after both types of nerve injury, CD increased in comparison to the CON-2 group (p < 0.001) due to atrophied muscle fibres in denervated muscles and probably proliferation of capillaries in re-innervated ones. Higher C/F, CAF (both p < 0.001) and Lcap (p < 0.01) in re-innervated than denervated EDL confirmed this assumption. Calculated capillary/fibre parameters were comparable to our previous 3D study, which strengthens the practical value to the adapted 2D method used in this study.
Keywords     poškodba živca
kapilarnost
fluorescentno slikanje
nerve injury
capillarity
fluorescence imaging