Author/Editor     Kunz, Hawley; Bishop, Nicolette C.; Spielmann, Guillaume; Pistillo, Mira; Reed, Justin; Klančič, Teja; Park, Yoonjung; Mehta, Satish K.; Pierson, Duane L.; Simpson, Richard J.
Title     Fitness level impacts salivary antimicrobial protein responses to a single bout of cycling exercise
Type     članek
Vol. and No.     Letnik 115, št. 5
Publication year     2015
Volume     str. 1015-1027
ISSN     1439-6319 - European journal of applied physiology
Language     eng
Abstract     Purpose Salivary antimicrobial proteins (sAMPs) protect the upper respiratory tract (URTI) from invading microorganisms and have been linked with URTI infection risk in athletes. While high training volume is associated with increased URTI risk, it is not known if fitness affects the sAMP response to acute exercise. This study compared the sAMP responses to various exercising workloads of highly fit experienced cyclists with those who were less fit. Methods Seventeen experienced cyclists (nine highly fit; eight less fit) completed three 30-min exercise trials at workloads corresponding to -5, +5 and +15% of the individual blood lactate threshold. Saliva samples were collected pre- and post-exercise to determine the concentration and secretion of [alpha]-amylase, human neutrophil proteins 1-3 (HNP1-3) lactoferrin, LL-37, lysozyme, and salivary SIgA. Results The concentration and/or secretion of all sAMPs increased post-exercise, but only [alpha]-amylase was sensitive to exercise workload. Highly fit cyclists had lower baseline concentrations of [alpha]-amylase, HNP1%3, and lactoferrin, although secretion rates did not differ between the groups. Highly fit cyclists did, however, exhibit greater post-exercise increases in the concentration and/or secretion of a majority of measured sAMPs (percentage difference between highly fit and less fit in parentheses), including [alpha]-amylase concentration (+107%) and secretion (+148%), HNP1-3 concentration (+97%) and secretion (+158%), salivary SIgA concentration (+181%), lactoferrin secretion (+209%) and LL-37 secretion (+138%). Conclusion We show for the first time that fitness level is a major determinant of exercise-induced changes in sAMPs. This might be due to training-induced alterations in parasympathetic and sympathetic nervous system activation.
Keywords     fitness
exercise intensity
innate mucosal immunity
fitnes
intenzivnost vadbe
prirojena imunost sluznice