Author/Editor     Staniforth, Rosemary A; Giannini, Silva; Higgins, Lee D; Conroy, Matthew J; Hounslow, Andrea M; Jerala, Roman; Craven, C Jeremy; Waltho, Jonathan P
Title     Three-dimensional domain swapping in the folded and molten-globule states of cystatins, an amyloid-forming structural superfamily
Type     članek
Source     EMBO J
Vol. and No.     Letnik 20, št. 17
Publication year     2001
Volume     str. 4774-81
Language     eng
Abstract     Cystatins, an amyloid-forming structural superfamily, form highly stable, domain-swapped dimers at physiological protein concentrations. In chicken cystatin, the active monomer is a kinetic trap en route to dimerization, and any changes in solution conditions or mutations that destabilize the folded state shorten the lifetime of the monomeric form. In such circumstances, amyloidogenesis will start from conditions where a domain-swapped dimer is the most prevalent species. Domain swapping occurs by a rearrangement of loop I, generating the new intermonomer interface between strands 2 and 3. The transition state for dimerization has a high level of hydrophobic group exposure, indicating that gross conformational perturbation is required for domain swapping to occur. Dimerization also occurs when chicken cystatin is in its reduced, molten-globule state, implying that the organization of secondary structure in this state mirrors that in the folded state and that domain swapping is not limited to the folded states of proteins. Although the interface between cystatin-fold units is poorly defined for cystatin A, the dimers are the appropriate size to account for the electron-dense regions in amyloid protofilaments.
Descriptors     PROTEIN FOLDING
CYSTATINS
THERMODYNAMICS
SEQUENCE HOMOLOGY, AMINO ACID
SEQUENCE ALIGNMENT
RECOMBINANT PROTEINS
PROTEIN STRUCTURE, SECONDARY
PROTEIN DENATURATION
NUCLEAR MAGNETIC RESONANCE
MUTAGENESIS, SITE-DIRECTED
MODELS, MOLECULAR
KINETICS
HYDROGEN BONDING
GUANIDINES
DIMERIZATION
AMINO ACID SEQUENCE
CHICKENS