biomedicina slovenica


"Machine learning" : 125

  1. Lusa Lara
    Statistical and machine learning techniques
    2022
  2. Virgolin Marco; Wang Ziyuan; Balgobind Brian; Dijk van Irma; Wiersma Jan; Kroon Petra S.; Janssens Geert O.; Herk Marcel van; Hodgson David C.; Zadravec-Zaletel Lorna
    Surrogate-free machine learning-based organ dose reconstruction for pediatric abdominal radiotherapy
    2020
  3. Leskovar Tamara; Zupanič-Pajnič Irena; Jerman Ivan; Črešnar Matija
    ATR-FTIR spectroscopy as a pre-screening technique for the PMI assessment and DNA preservation in human skeletal remains ‐ a review
    2022
  4. Kouter Katarina; Škrlj Blaž; Kuclar M; Bon Jurij; Videtič Paska Alja
    The use of machine learning in suicidal behaviour research
    2021
  5. Bulloni Matteo; Sandrini Giada; Stacchiotti Irene; Barberis Massimo; Calabrese Fiorella; Carvalho Lina; Fontanini Gabriella; Alì Greta; Fortarezza Francesco; Hofman Paul; Kern Izidor
    Automated analysis of proliferating cells spatial organisation predicts prognosis in lung neuroendocrine neoplasms
    2021
  6. Banić Ivana; Lovrić Mario; Cuder Gerald; Kern Roman; Rijavec Matija; Korošec Peter; Kljajić-Turkalj Mirjana
    Treatment outcome clustering patterns correspond to discrete asthma phenotypes in children
    2021
  7. Gupta Rajan; Pandey Gaurav; Pal Saibal K.
    Comparative analysis of epidemiological models for COVID-19 pandemic predictions
    2021
  8. Colozza-Gama Gabriel A.; Callegari Fabiano; Bešić Nikola; Paviza Ana C. de J.; Cerutti Janete M.
    Machine learning algorithm improved automated droplet classification of ddPCR for detection of BRAF V600E in paraffin-embedded samples
    2021
  9. Kukar Matjaž; Gunčar Gregor; Vovko Tomaž; Podnar Simon; Černelč Peter; Brvar Miran; Zalaznik Mateja; Notar Mateja; Moškon Sašo; Notar Marko
    COVID-19 diagnosis by routine blood tests using machine learning
    2021
  10. Rocco Bernardo; Sighinolfi Maria Chiara; Sandri Marco; Spandri Valentina; Cimadamore Alessia; Volavšek Metka; Mazzucchelli Roberta; Lopez-Beltran Antonio; Eissa Ahmed; Bertoni Laura
    Digital biopsy with fluorescence confocal microscope for effective real-time diagnosis of prostate cancer
    2021
  11. Troll Martina; Brandmaier Stefan; Reitmeier Sandra; Adam Jonathan; Sharma Sapna; Sommer Alice; Bind Marie-Abèle; Neuhaus Klaus; Clavel Thomas; Adamski Jerzy
    Investigation of adiposity measures and operational taxonomic unit (OTU) data transformation procedures in stool samples from a German cohort study using machine learning algorithms
    2020
  12. Atabaki-Pasdar Naeimeh; Ohlsson Mattias; Viñuela Ana; Frau Francesca; Pomares-Millan Hugo; Haid Mark; Jones Angus G.; Thomas E. Louise; Koivula Robert W.; Adamski Jerzy
    Predicting and elucidating the etiology of fatty liver disease
    2020
  13. Huang Jialing; Huth Cornelia; Covic Marcela; Troll Martina; Adam Jonathan; Zukunft Sven; Prehn Cornelia; Wang Li; Nano Jana; Adamski Jerzy
    Machine learning approaches reveal metabolic signatures of incident chronic kidney disease in individuals with prediabetes and type 2 diabetes
    2020
  14. Ghaffari Morteza H.; Jahanbekam Amirhossein; Hassani Sadri; Schuh Katharina; Dusel Georg; Prehn Cornelia; Adamski Jerzy; Koch Christian; Sauerwein Helga
    Metabolomics meets machine learning
    2019
  15. Deutsch Leon; Osredkar Damjan; Plavec Janez; Stres Blaž
    Spinal muscular atrophy after nusinersen therapy
    2021
  16. Orešković Tin; Kujundžić Tiljak Mirjana
    Proactive machine-learning-based approaches to vaccine hesitancy for a potential SARS-Cov-2 vaccine
    2020
  17. Bell Andrew; Rich Alexander; Teng Melisande; Orešković Tin; Bras Nuno B; Mestrinho Lénia; Golubovic Srdan; Pristaš Ivan; Zejnilović Leid
    Proactive advising
    2019
  18. Kastrin Andrej; Hristovski Dimitar
    Scientometric analysis and knowledge mapping of literature-based discovery (1986-2020)
    2020
  19. Videtič Paska Alja; Kouter Katarina
    Machine learning as the new approach in understanding biomarkers of suicidal behavior
    2020
  20. Sudre Carole H.; Panovska-Griffiths Jasmina; Sanverdi Eser; Brandner Sebastian; Katsaros Vasileios K; Stranjalis George; Pizzini Francesca B.; Ghimenton Claudio; Šurlan Popović Katarina; Avsenik Jernej
    Machine learning assisted DSC-MRI radiomics as a tool for glioma classification by grade and mutation status
    2020
  21. Jovchevska Ivana
    Next generation sequencing and machine learning technologies are painting the epigenetic portrait of glioblastoma
    2020
  22. Podnar Simon; Kukar Matjaž; Gunčar Gregor; Notar Mateja; Gošnjak Nina; Notar Marko
    Diagnosing brain tumours by routine blood tests using machine learning
    2019
  23. Leskovar Tamara; Zupanič-Pajnič Irena; Geršak Živa Miriam; Jerman Ivan; Črešnar Matija
    ATR-FTIR spectroscopy combined with data manipulation as a pre-screening method to assess DNA preservation in skeletal remains
    2020
  24. Knific Tamara; Fishman Dmytro; Vogler Andrej; Gstöttner Manuela; Wenzl René; Peterson Hedi; Lanišnik-Rižner Tea
    Multiplex analysis of 40 cytokines do not allow separation between endometriosis patients and controls
    2019
  25. Gorenjak Mario; Repnik Katja; Jezernik Gregor; Jurgec Staša; Skok Pavel; Potočnik Uroš
    Genetic prediction profile for adalimumab response in Slovenian Crohn's disease patients
    [Genetisches Vorhersageprofil für die Adalimumab-Antwort bei den slowenischen Morbus-Crohn-Patienten]
    2019
  26. Osredkar Joško; Gosar David; Maček Jerneja; Kumer Kristina; Fabjan Teja; Finderle Petra; Šterpin Saša; Zupan Mojca; Jekovec-Vrhovšek Maja
    Urinary markers of oxidative stress in children with autism spectrum disorder (ASD)
    2019
  27. Pečnik Klemen; Todorović Vesna; Bošnjak Maša; Čemažar Maja; Kononenko Igor; Serša Gregor; Plavec Janez
    The general explanation method with NMR spectroscopy enables the identification of metabolite profiles specific for normal and tumor cell lines
    2018
  28. Xu Lina; Simjanovska Monika; Koteska Bojana; Trajkovski Vladimir; Bogdanova Ana Madevska; Drusany Starič Kristina; Lehocki Fedor
    Special section on trends, perspectives and prospects of machine learning applied to biomedical systems in internet of medical things
    2019
  29. Perk Timothy; Bradshaw Tyler J.; Chen Song; Im Hyung-Jun; Cho Steve; Perlman Scott; Liu Glenn; Jeraj Robert
    Automated classification of benign and malignant lesions in 18F-NaF PET/CT images using machine learning
    2018
  30. Zalar Bojan; Kores-Plesničar Blanka; Zalar Ina; Mertik Matej; Peterlin Borut
    Suicide and suicide attempt descriptors by multimethod approach
    2018
  31. Listyowardojo Tita A.; Berglund Lars-Martin; Turk Eva
    Managing alarm systems for quality and safety in the hospital setting
    2018
  32. Gunčar Gregor; Kukar Matjaž; Notar Mateja; Brvar Miran; Černelč Peter; Notar Manca; Notar Marko
    An application of machine learning to haematological diagnosis
    2018
  33. Potočnik Uroš; Mitrovič Mitja; Repnik Katja; Štiglic Gregor; Weersma Rinse K.
    Machine learning algorithms based on genotype data predict subgroup of refractory Crohn's disease patients requiring biological therapy
    2015
  34. Zorman Milan; Sánchez de la Rosa José Luis; Dinevski Dejan
    Classification of follicular lymphoma images
    2011
  35. Zorman Milan; Pohorec Sandi; Butolen Bojan; Žlahtič Bojan; Kokol Peter
    Navzkrižno testiranje simboličnih in konektivističnih pristopov strojnemu učenju na specializiranih bazah akutnega vnetja slepiča
    [Cross-testing symbolic and connectionist machine learning approaches in specialized acute appendicitis databases]
    2012
  36. Volk Marija; Maver Aleš; Lovrečić Luca; Juvan Peter; Peterlin Borut
    Expression signature as a biomarker for prenatal diagnosis of trisomy 21
    2013
  37. Tao Dacheng
    ICMLA 2012
    2012
  38. Groznik Vida; Guid Matej; Sadikov Aleksander; Možina Martin; Georgiev Dejan; Kragelj Veronika; Ribarič Samo; Pirtošek Zvezdan; Bratko Ivan
    Elicitation of neurological knowledge with ABML
    2011
  39. Blagus Rok; Lusa Lara
    Evaluation of SMOTE for high-dimensional class-imbalanced microarray data
    2012
  40. Lusa Lara; Blagus Rok
    The class-imbalance problem for hig-dimensional class prediction
    2012
  41. Tao Dacheng
    ICMLA 2012. 11th International conference on machine learning and applications; 2012 Dec 12-15; Boca Raton
    2012
  42. Groznik Vida; Guid Matej; Sadikov Aleksander; Možina Martin; Georgiev Dejan; Kragelj Veronika; Ribarič Samo; Pirtošek Zvezdan; Bratko Ivan
    Elicitation of neurological knowledge with argument-based machine learning
    2013
  43. Grabnar Jera; Grošelj Ciril; Grošelj Urh
    Machine learning based expert system for SPECT myocardial perfusion scintigrams interpretation
    2010
  44. Kononenko Igor; Kukar Matjaž; Grošelj Ciril
    Controlling the trade-off between the sensitivity and specificity in the diagnostics of the ischeamic heart disease
    1997
  45. Anonymous ;
    Advanced seminar for professioanals Biomedical applications of computational logic and machine learning; 1997 Nov 11; Bled
    1997
  46. Grošelj C; Kukar M; Fettich J; Kononenko I
    Machine learning improves the accuracy of coronary artery disease diagnostic methods
    1999
  47. Panjan Andrej; Filipčič Aleš; Šarabon Nejc
    Application of machine learning methods in studies of tennis game profile
    2010
  48. Križmarić Miljenko; Verlič Mateja; Štiglic Gregor; Grmec Štefek; Kokol Peter
    Intelligent analysis in predicting outcome of out-of-hospital cardiac arrest
    2009
  49. Lenič Mitja; Zazula Damjan; Cigale Boris
    Obtaining completely stable cellular neural network templates for ultrasound image segmentation
    2007
  50. Grošelj Kristina; Grošelj Jera; Mlinarič Mojca; Grošelj Urh
    Strojno učenje v interpretaciji rezultatov obremenitvene scintigrafije srčne mišice
    [Machine learning methods in interpretation of results of stress myocardial perfusion scintigraphy]
    2007
  51. Kukar M; Grošelj C; Grošelj U
    Improving diagnostic process of coronary artery disease with multi-resolution image parametrization and machine learning
    2007
  52. Leban Gregor; Zupan Blaž; Vidmar Gaj; Bratko Ivan
    VizRank: data visualization guided by machine learning
    2006
  53. Jakulin A; Bratko I; Smrke D; Demšar J; Zupan B
    Attribute interactions in medical data analysis
    2003
  54. Kobal-Grum Darja; Arnerič Niko; Kobal Alfred B; Horvat Milena; Ženko Bernard; Džeroski Sašo; Osredkar Joško
    Emotions and personality traits in former mercury miners
    [Čustva ter osebnostne lastnosti bivših rudarjev v rudniku živega srebra]
    2004
  55. Kokol Peter; Mičetić-Turk Dušanka; Blažun Helena
    Integrating working experiences into nursing education with intelligent tools
    2005
  56. Grošelj C; Kukar M; Fettich J; Kononenko I
    Machine learning improves the accuracy of coronary artery disease diagnostic methods
    1997
  57. Kukar Matjaž; Grošelj Ciril
    Transductive machine learning for reliable medical diagnostics
    2005
  58. Grošelj C; Kukar M
    Interpreting the results of myocardial perfusion scintigraphy by machine learning
    2004
  59. Grošelj C; Kukar M
    Estimating the pretest probability of coronary artery disease by machine learning - comparison with the Diamond-Forrester method
    2004
  60. Kokol Peter; Povalej Petra; Završnik Jernej
    Intelligent systems in nursing research
    2003
  61. Ženko Bernard; Džeroski Sašo; Kobal Alfred B; Kobal-Grum Darja; Arnerić Niko; Osredkar Joško; Horvat Milena
    Relating personality traits and mercury exposure in miners with machine learning methods: a preliminary study
    2003
  62. Curk Tomaž; Zupan Blaž; Vidmar Gaj
    Razvrščanje profilov izražanja genov z metodami strojnega učenja
    [Classification of gene expression profiles with machine learning]
    2003
  63. Stankovski V; Bratko I; Demšar J; Smrke D
    Induction of hypotheses concerning hip arthroplasty: a modified methodology for medical research
    2001
  64. Smith AE; Stankovski V; Marsh DM
    A comparison of two alternative methodologies for estimation of length of hospital stay
    2003
  65. Gamberger D; Šmuc T; Lavrač N
    Subgroup discovery: on-line data mining server and its application
    2003
  66. Molan Gregor; Molan Marija
    Formalization of expert AH model for machine learning
    2002
  67. Grošelj C; Kukar M
    Machine learning improves the accuracy of myocardial perfusion scintigraphy results
    2002
  68. Kukar Matjaž; Grošelj Ciril
    Reliable diagnostic for coronary artery disease
    2002
  69. Leskošek Branimir
    Elektromiografija maternice med gravidnostjo pri človeku in ovci
    2002
  70. Stankovski V; Smoth AE; Arnež ZM; Veselko M; Lopez JA; Young IR
    A decision tree model for length of stay in hospital
    2002
  71. Grošelj C; Kukar M
    Improving the accuracy of myocardial perfusion scintigraphy results by machine learning method
    2002
  72. Kokol Peter; Zorman Milan; Eich Hans-Peter; Ohmann Christian
    The difficulties of decision trees in the diagnostic of acute abdominal pain
    2001
  73. Lavrač Nada; Kononenko Igor; Keravnou Elpida; Kukar Matjaž; Zupan Blaž
    Intelligent data analysis for medical diagnosis: using machine learning and temporal abstraction
    1998
  74. Lukačić Zoran; Kern Josipa; Težak-Benčić Marija
    Detecting predictors of new-born survival by fuzzy sets based machine learning system
    2000
  75. Robnik-Šikonja Marko; Kononenko Igor
    Attribute dependencies, understandability and split selection in tree based models
    1999
  76. Pompe Uroš
    Noise-tolerant recursive best-first induction
    1999
  77. Mladenić Dunja; Grobelnik Marko
    Feature selection for unbalanced class distribution and naive Bayes
    1999
  78. Gamberger Dragan; Lavrač Nada; Grošelj Ciril
    Experiments with noise filtering in a medical domain
    1999
  79. Bratko Ivan; Džeroski Sašo
    Machine learning. Proceedings of the 16th international conference (ICML'99); 1999 Jun 27-30; Bled
    1999
  80. Grošelj C; Kukar M; Fettich JJ; Kononenko I
    Machine learning in the diagnosis of ischaemic heart disease
    1997
  81. Lavrač N
    Selected techniques for data mining in medicine
    1999
  82. Kukar Matjaž; Grošelj Ciril
    Machine learning in stepwise diagnostic process
    1999
  83. Kononenko Igor
    A counter example to the stronger version of the binary tree hypothesis
    1995
  84. Kononenko Igor
    Estimating attributes: analysis and extensions of RELIEF
    1994
  85. Kukar Matjaž; Kononenko Igor; Grošelj Ciril; Kralj Katarina; Fettich Jure
    Analysing and improving the diagnosis of ischaemic heart disease with machine learning
    1999
  86. Stankovski V
    The use of artificial intelligence in interpretation of clinical trials
    1998
  87. Grošelj Ciril
    Sistem nevronskih mrež v diagnostiki ishemične bolezni srca
    1999
  88. Zelič Igor; Lavrač Nada
    Impact of machine learning to the diagnosis and prognosis of first cerebral paroxysm
    1999
  89. Zrimec Tatjana; Sammut Claude
    The potential for machine learning in medical image processing
    1997
  90. Bajd T; Grobelnik M; Mladenić D; Lavrač N; Prodnik V; Benko H; Šavrin R; Obreza P
    Machine learning for prediction of walking abilities in incomplete spinal cord injured patients
    1997
  91. Bajd T; Kralj A; Štefančič M; Lavrač N
    FES assisted walking in incomplete SCI subjects: an overview
    1998
  92. Zelič Igor; Kononenko Igor; Lavrač Nada; Vuga Vanja
    Diagnosis of sport injuries with machine learning: explanatation of induced decisions
    1997
  93. Zelič Igor; Kononenko Igor; Lavrač Nada; Vuga Vanja
    Machine learning applied to diagnosis of sport injuries
    1997
  94. Zupan Blaž; Džeroski Sašo
    Acquiring and validating background knowledge for machine learning using function decomposition
    1997
  95. Zupan Blaž; Stokić Dobrivoje S; Bohanec Marko; Priebe Michael M; Sherwood Arthur M
    Relating clinical and neurophysiological assesment of spasticity by machine learning
    1997
  96. Kononenko Igor; Bratko Ivan; Kukar Matjaž
    Application of machine learning to medical diagnosis
    1998
  97. Šter Branko; Kukar Matjaž; Dobnikar Andrej; Kranjec Igor; Kononenko Igor
    Experiments with machine learning in the prediction of coronary artery disease progression
    1997
  98. Kukar Matjaž; Bešič Nikola; Kononenko Igor; Auersperg Marija; Robnik-Šikonja Marko
    Prognosing the survival time of patients with anaplastic thyroid carcinoma using machine learning
    1997
  99. Kukar Matjaž; Kononenko Igor; Silvester Tomaž
    Machine learning in prognosis of the femoral neck fracture recovery
    1996
  100. Šter Branko; Kukar Matjaž; Dobnikar Andrej; Kranjec Igor; Kononenko Igor
    Experiments with machine learning in the prediction of coronary artery disease progression
    1996

1 101  



New search      Comments      Top of page Institute for Biostatistics and Medical Informatics